Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean-Phytophthora sojae interaction.

Identifieur interne : 001A90 ( Main/Exploration ); précédent : 001A89; suivant : 001A91

Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean-Phytophthora sojae interaction.

Auteurs : Narayanan N. Narayanan [États-Unis] ; Sehiza Grosic ; I M Tasma ; David Grant ; Randy Shoemaker ; Madan K. Bhattacharyya

Source :

RBID : pubmed:18825360

Descripteurs français

English descriptors

Abstract

Stem and root rot caused by the oomycete pathogen, Phytophthora sojae, is a serious soybean disease. Use of Phytophthora resistance genes (Rps) in soybean cultivars has been very effective in controlling this pathogen. Resistance encoded by Rps genes is manifested through activation of defense responses. In order to identify candidate signaling genes involved in the expression of Phytophthora resistance in soybean, a cDNA library was prepared from infected etiolated hypocotyl tissues of a Phytophthora resistant soybean cultivar harvested 2 and 4 h following P. sojae inoculation. In silico subtraction of 101,833 expressed sequence tags (ESTs) originating from unstressed cDNA libraries from 4,737 ESTs of this library resulted in identification of 204 genes that were absent in the unstressed libraries. Of the 204 identified genes, seven were P. sojae genes. Putative function of 91 of the 204 genes could not be assigned based on sequence comparison. Macroarray analyses of all 204 genes led to identification of 60 genes including 15 signaling-related soybean genes and three P. sojae genes, transcripts of which were induced twofold in P. sojae-infected tissues as compared to that in water controls. Eight soybean genes were down-regulated twofold following P. sojae infection as compared to water controls. Differential expression of a few selected genes was confirmed by conducting Northern and RT-PCR analyses. We have shown that two putative regulators of chromosome condensation 1 (RCC1) family proteins were down-regulated in the incompatible interaction. This observation suggested that the nucleocytoplasmic transport function for trafficking protein and non-coding RNA is suppressed during expression of race-specific Phytophthora resistance. Characterization of a cDNA library generated from tissues harvested almost immediately following P. sojae-infection of a resistant cultivar allowed us to identify many candidate signaling genes that are presumably involved in regulating the expression of defense-related pathways for expression of Phytophthora resistance in soybean.

DOI: 10.1007/s00122-008-0895-z
PubMed: 18825360


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean-Phytophthora sojae interaction.</title>
<author>
<name sortKey="Narayanan, Narayanan N" sort="Narayanan, Narayanan N" uniqKey="Narayanan N" first="Narayanan N" last="Narayanan">Narayanan N. Narayanan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agronomy, Iowa State University, Ames, IA 50011, USA. narayanan752000@yahoo.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy, Iowa State University, Ames, IA 50011</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Ames (Iowa)</settlement>
</placeName>
<orgName type="university">Université d'État de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Grosic, Sehiza" sort="Grosic, Sehiza" uniqKey="Grosic S" first="Sehiza" last="Grosic">Sehiza Grosic</name>
</author>
<author>
<name sortKey="Tasma, I M" sort="Tasma, I M" uniqKey="Tasma I" first="I M" last="Tasma">I M Tasma</name>
</author>
<author>
<name sortKey="Grant, David" sort="Grant, David" uniqKey="Grant D" first="David" last="Grant">David Grant</name>
</author>
<author>
<name sortKey="Shoemaker, Randy" sort="Shoemaker, Randy" uniqKey="Shoemaker R" first="Randy" last="Shoemaker">Randy Shoemaker</name>
</author>
<author>
<name sortKey="Bhattacharyya, Madan K" sort="Bhattacharyya, Madan K" uniqKey="Bhattacharyya M" first="Madan K" last="Bhattacharyya">Madan K. Bhattacharyya</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:18825360</idno>
<idno type="pmid">18825360</idno>
<idno type="doi">10.1007/s00122-008-0895-z</idno>
<idno type="wicri:Area/Main/Corpus">001D29</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D29</idno>
<idno type="wicri:Area/Main/Curation">001D29</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D29</idno>
<idno type="wicri:Area/Main/Exploration">001D29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean-Phytophthora sojae interaction.</title>
<author>
<name sortKey="Narayanan, Narayanan N" sort="Narayanan, Narayanan N" uniqKey="Narayanan N" first="Narayanan N" last="Narayanan">Narayanan N. Narayanan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agronomy, Iowa State University, Ames, IA 50011, USA. narayanan752000@yahoo.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy, Iowa State University, Ames, IA 50011</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Ames (Iowa)</settlement>
</placeName>
<orgName type="university">Université d'État de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Grosic, Sehiza" sort="Grosic, Sehiza" uniqKey="Grosic S" first="Sehiza" last="Grosic">Sehiza Grosic</name>
</author>
<author>
<name sortKey="Tasma, I M" sort="Tasma, I M" uniqKey="Tasma I" first="I M" last="Tasma">I M Tasma</name>
</author>
<author>
<name sortKey="Grant, David" sort="Grant, David" uniqKey="Grant D" first="David" last="Grant">David Grant</name>
</author>
<author>
<name sortKey="Shoemaker, Randy" sort="Shoemaker, Randy" uniqKey="Shoemaker R" first="Randy" last="Shoemaker">Randy Shoemaker</name>
</author>
<author>
<name sortKey="Bhattacharyya, Madan K" sort="Bhattacharyya, Madan K" uniqKey="Bhattacharyya M" first="Madan K" last="Bhattacharyya">Madan K. Bhattacharyya</name>
</author>
</analytic>
<series>
<title level="j">TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</title>
<idno type="ISSN">0040-5752</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Computational Biology (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Library (MeSH)</term>
<term>Immunity, Innate (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phytophthora (physiology)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Proteins (physiology)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Signal Transduction (genetics)</term>
<term>Soybeans (genetics)</term>
<term>Soybeans (parasitology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Banque de gènes (MeSH)</term>
<term>Biologie informatique (MeSH)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Immunité innée (génétique)</term>
<term>Maladies des plantes (génétique)</term>
<term>Phytophthora (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéines végétales (physiologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Soja (génétique)</term>
<term>Soja (parasitologie)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transduction du signal (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Immunity, Innate</term>
<term>Plant Diseases</term>
<term>Signal Transduction</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Immunité innée</term>
<term>Maladies des plantes</term>
<term>Protéines végétales</term>
<term>Soja</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Soja</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phytophthora</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Phytophthora</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cloning, Molecular</term>
<term>Computational Biology</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Library</term>
<term>Molecular Sequence Data</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Banque de gènes</term>
<term>Biologie informatique</term>
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stem and root rot caused by the oomycete pathogen, Phytophthora sojae, is a serious soybean disease. Use of Phytophthora resistance genes (Rps) in soybean cultivars has been very effective in controlling this pathogen. Resistance encoded by Rps genes is manifested through activation of defense responses. In order to identify candidate signaling genes involved in the expression of Phytophthora resistance in soybean, a cDNA library was prepared from infected etiolated hypocotyl tissues of a Phytophthora resistant soybean cultivar harvested 2 and 4 h following P. sojae inoculation. In silico subtraction of 101,833 expressed sequence tags (ESTs) originating from unstressed cDNA libraries from 4,737 ESTs of this library resulted in identification of 204 genes that were absent in the unstressed libraries. Of the 204 identified genes, seven were P. sojae genes. Putative function of 91 of the 204 genes could not be assigned based on sequence comparison. Macroarray analyses of all 204 genes led to identification of 60 genes including 15 signaling-related soybean genes and three P. sojae genes, transcripts of which were induced twofold in P. sojae-infected tissues as compared to that in water controls. Eight soybean genes were down-regulated twofold following P. sojae infection as compared to water controls. Differential expression of a few selected genes was confirmed by conducting Northern and RT-PCR analyses. We have shown that two putative regulators of chromosome condensation 1 (RCC1) family proteins were down-regulated in the incompatible interaction. This observation suggested that the nucleocytoplasmic transport function for trafficking protein and non-coding RNA is suppressed during expression of race-specific Phytophthora resistance. Characterization of a cDNA library generated from tissues harvested almost immediately following P. sojae-infection of a resistant cultivar allowed us to identify many candidate signaling genes that are presumably involved in regulating the expression of defense-related pathways for expression of Phytophthora resistance in soybean.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18825360</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>06</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0040-5752</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>118</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2009</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</Title>
<ISOAbbreviation>Theor Appl Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean-Phytophthora sojae interaction.</ArticleTitle>
<Pagination>
<MedlinePgn>399-412</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00122-008-0895-z</ELocationID>
<Abstract>
<AbstractText>Stem and root rot caused by the oomycete pathogen, Phytophthora sojae, is a serious soybean disease. Use of Phytophthora resistance genes (Rps) in soybean cultivars has been very effective in controlling this pathogen. Resistance encoded by Rps genes is manifested through activation of defense responses. In order to identify candidate signaling genes involved in the expression of Phytophthora resistance in soybean, a cDNA library was prepared from infected etiolated hypocotyl tissues of a Phytophthora resistant soybean cultivar harvested 2 and 4 h following P. sojae inoculation. In silico subtraction of 101,833 expressed sequence tags (ESTs) originating from unstressed cDNA libraries from 4,737 ESTs of this library resulted in identification of 204 genes that were absent in the unstressed libraries. Of the 204 identified genes, seven were P. sojae genes. Putative function of 91 of the 204 genes could not be assigned based on sequence comparison. Macroarray analyses of all 204 genes led to identification of 60 genes including 15 signaling-related soybean genes and three P. sojae genes, transcripts of which were induced twofold in P. sojae-infected tissues as compared to that in water controls. Eight soybean genes were down-regulated twofold following P. sojae infection as compared to water controls. Differential expression of a few selected genes was confirmed by conducting Northern and RT-PCR analyses. We have shown that two putative regulators of chromosome condensation 1 (RCC1) family proteins were down-regulated in the incompatible interaction. This observation suggested that the nucleocytoplasmic transport function for trafficking protein and non-coding RNA is suppressed during expression of race-specific Phytophthora resistance. Characterization of a cDNA library generated from tissues harvested almost immediately following P. sojae-infection of a resistant cultivar allowed us to identify many candidate signaling genes that are presumably involved in regulating the expression of defense-related pathways for expression of Phytophthora resistance in soybean.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Narayanan</LastName>
<ForeName>Narayanan N</ForeName>
<Initials>NN</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy, Iowa State University, Ames, IA 50011, USA. narayanan752000@yahoo.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grosic</LastName>
<ForeName>Sehiza</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tasma</LastName>
<ForeName>I M</ForeName>
<Initials>IM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grant</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shoemaker</LastName>
<ForeName>Randy</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bhattacharyya</LastName>
<ForeName>Madan K</ForeName>
<Initials>MK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>09</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Theor Appl Genet</MedlineTA>
<NlmUniqueID>0145600</NlmUniqueID>
<ISSNLinking>0040-5752</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>12</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>09</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18825360</ArticleId>
<ArticleId IdType="doi">10.1007/s00122-008-0895-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Oct;18(10):1035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16255242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:137-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Apr;17(4):394-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15077672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2002 Jul;4(7):E177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12105431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(3):488-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17535896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 May;13(5):1035-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11340180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 18;279(25):26370-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2003 Apr;14(2):177-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2006 Oct 26;3:74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17067381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 1999;15:607-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 May;19(5):1682-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 1997 Jun 30;7(3):408-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9264030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):326-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1345-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jan;29(1):23-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jun;12(6):963-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10852940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 May;18(3):321-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Mar;119(3):935-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1773-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;200:38-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1956325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 1998 Oct 31;8(5):556-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9856343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nematol. 2006 Jun;38(2):173-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19259444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1988 Jan;13(1):23-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3072693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Jun;111(1):75-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15841357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Oct 23;17(20):1784-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17919906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Aug;7(4):465-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Feb 15;116(Pt 4):587-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):732-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1306-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):1118-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18390593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 May 30;272(22):14412-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9162080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1051-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2005 Sep-Oct;96(5):536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15958793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):299-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17494920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18056646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Dec;168(4):2157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15611183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2007 Apr;269(2):280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1788-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Jun 21;15(12):1129-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Oct 17;26(20):4293-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17853890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):728-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(1):27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16804054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Mar;5(3):e68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17298188</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
</region>
<settlement>
<li>Ames (Iowa)</li>
</settlement>
<orgName>
<li>Université d'État de l'Iowa</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bhattacharyya, Madan K" sort="Bhattacharyya, Madan K" uniqKey="Bhattacharyya M" first="Madan K" last="Bhattacharyya">Madan K. Bhattacharyya</name>
<name sortKey="Grant, David" sort="Grant, David" uniqKey="Grant D" first="David" last="Grant">David Grant</name>
<name sortKey="Grosic, Sehiza" sort="Grosic, Sehiza" uniqKey="Grosic S" first="Sehiza" last="Grosic">Sehiza Grosic</name>
<name sortKey="Shoemaker, Randy" sort="Shoemaker, Randy" uniqKey="Shoemaker R" first="Randy" last="Shoemaker">Randy Shoemaker</name>
<name sortKey="Tasma, I M" sort="Tasma, I M" uniqKey="Tasma I" first="I M" last="Tasma">I M Tasma</name>
</noCountry>
<country name="États-Unis">
<region name="Iowa">
<name sortKey="Narayanan, Narayanan N" sort="Narayanan, Narayanan N" uniqKey="Narayanan N" first="Narayanan N" last="Narayanan">Narayanan N. Narayanan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A90 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A90 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18825360
   |texte=   Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean-Phytophthora sojae interaction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18825360" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024